mdsk.net
当前位置:首页 >> ∫Dx 1+sinx >>

∫Dx 1+sinx

∫ dx/sinx = ∫ cscxdx = ln|cscx-cotx| + C = lntan(x/2) + C p + √(1+p^2) = e^(x/a), √(1+p^2) = e^(x/a) - p 1 + p^2 = e^(2x/a) - 2pe^(x/a) + p^2 e^(2x/a) -1 = 2pe^(x/a) p = (1/2)[e^(x/a) - e^(-x/a)] = sinh(x/a)

这个是三角函数的不定积分,分母应先进性化简,计算步骤为: ∫1/(sinx+cosx)dx =∫dx/√2sin(x+π/4) =-(√2/2)∫dcos(x+π/4)/sin^2(x+π/4) =-(√2/4){∫dcos(x+π/4)/[1-cos(x+π/4)]+∫dcos(x+π/4)/[1+cos(x+π/4)]} =-(√2/4)ln{[1+cos(x+π/4)]/[1-cos...

定积分作换元时必须得有反函数存在,在区间0到2π上,y=sinx没有反函数,所以不能直接用t=sinx来做

令t=tan(x/2),则x=2arctant,所以dx=2/(1+t^2)dt 由万能公式:sinx=2tan(x/2)/(1+(tan(x/2))^2)=2t/(1+t^2), 则原式=(1/2)∫d(t+1/2)/[(t+1/2)^2+(根号3/2)^2] =(1/根号3)arctan[2(t+1/2)/根号3]+C =(1/根号3)arctan[2(arctan(x/2)+1/2)/根号3]+C

用到cscx和cotx的原函数公式。 请见下图: 扩展资料 做题技巧: 1、对被积函数中的复杂项进行试探性的求导,因为你对复杂项求导后,一般会发现被积函数表达式中含有求导后的项,这样就可以进行约分。 2、换元法:对复杂项考虑整体代换。 3、分部...

这个广义积分的奇点在0处,也就是说 ∫(0,1]1/sinx dx的情况是怎么样的,通常就要看∫[e,1]1/sinx dx在e->0+的时候是不是极限存在。 我们知道在0+附近有sinx∫[e,1]1/x dx,但是我们知道∫(0,1]1/x dx是发散的,所以∫(0,1]1/sinx dx也是发散的。所...

先求不定积分 ∫1/sinx dx =∫sinx/sin²xdx =-∫1/sin²xdcosx =-∫1/(1-cos²x)dcosx =∫1/(cosx+1)(cosx-1)dcosx =∫[1/(cosx-1)-1/(cosx+1)]/2dcosx =[∫1/(cosx-1)dcosx-∫1/(cosx+1)dcosx]/2 =[∫1/(cosx-1)d(cosx-1)-∫1/(cosx+1)d(cos...

sinx+cosx=√2sin(x+π/4) 原式=√2/2∫csc(x+π/4)dx从0到π/2 基本积分公式积出来代入即可,答案应该是√2ln(√2+1)。这是07年数二的第22题。

您好,答案如图所示: 很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。☆⌒_⌒☆ 如果问题解决后,请点击下面的“选为满意答案”

网站首页 | 网站地图
All rights reserved Powered by www.mdsk.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com