mdsk.net
当前位置:首页 >> 大一高数问题 >>

大一高数问题

柯西中值定理:设函数f(x),g(x)在[a,b]上连续,在(a、b)内可导,且g'(x)≠0(x∈(a,b)), 则至少存在一点,ξ∈(a,b), 使得 f'(ξ)/g'(ξ)=[f(b)-f(a)]/[g(b)-g(a)]成立。 f(x)=sinx及g(x)=x+cosx,在区间[0,兀/2]上连续,在(0,兀/2)内可导,且g'(...

这种选择题应该用图解 如图,如有疑问或不明白请提问哦!

如图

这个是根据曲线积分公式 例如:

x²-Rx+y²=0 x²-Rx+R²/4 +y² =R²/4 (x-R/2)²+y² =R²/4 你是怎么转化啊

证明过程是有点问题。 首先证明连续性: 当x->0时,limf(x)=limx²sin(1/x)=0 因为x趋向0,而sin(1/x)有限,所以乘积趋向零,而f(0)=0,所以函数在x=0处连续。 可导性: f(0-)=lim((f(x)-f(0))/x)=limxsin(1/x)=0 f(0+)=lim((f(x)-f(0))/x)=...

1,特征方程u^2+u-2=0,解得两个特征值1和-2,齐次通解形式为y1=C1e^x+C2e^(-2x),C1、C2均为待定未知数; 2,设非齐特解形式y*=ax+b,带入原式解得a=-1,b=-1/2,即特解为y*=-x-1/2; 3,齐次通解与非齐特解相加得非齐通解,即:y=y1+y*=C1e^...

左连续就是左极限存在,且等于该点函数值。 右连续就是右极限存在,且等于该点函数值。 左连续且右连续,则函数在这点连续。

首先要理清高数总体的知识框架。高数的主体是微积分。 微积分分为微分学和积分学两部分,微分学和积分学的基础和核心思想都是极限,极限的思想是贯穿于始终的,所以首先要掌握极限的定义。 微分学的中心问题是求导问题,反映在几何上就是切线问...

∫cos(√x)dx 令√x=u,则dx/2√x=du,dx=2(√x)du=2udu, 原式=2∫ucosudu =2∫ud(sinu) =2[usinu-∫sinudu] =2(usinu+cosu)+C =2[(√x)sin(√x)+cos(√x)]+C ~~~~~~~~~~~~~~~~~~~~~~~~~ ∫√x(x+1)^2dx 令√x=t, 则dx=2tdt,带入 =∫t(t^2+1)^2*2tdt =∫2t^6+4t^4...

网站首页 | 网站地图
All rights reserved Powered by www.mdsk.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com