mdsk.net
当前位置:首页 >> 矩阵里面的范数有什么意义? >>

矩阵里面的范数有什么意义?

在介绍主题之前,先来谈一个非常重要的数学思维方法:几何方法 。在大学之前,我们学习过一次函数、二次函数、三角函数、指数函数、对数函数等,方程则是求函数的零点;到了大学,我们学微积分、复变函数、实变函数、泛函等。我们一直都在学习和...

百科里面有,虽然还很不完整,不过对你来讲应该够了 http://baike.baidu.com/view/637132.html 里面是按方阵写的,长方形的公式都一样。 理论上讲范数的概念属于赋范线性空间,最重要的作用是诱导出距离,进而还可以研究收敛性。 对于矩阵而言没...

有些矩阵范数不可以由向量范数来诱导,比如常用的Frobenius范数(也叫Euclid范数,简称F-范数或者 E-范数):║A║F= ( ∑∑ aij^2 )^1/2 (A全部元素平方和的平方根)。容易验证F-范数是相容的,但当min{m,n}>1时F-范数不能由向量范数诱导 (||E11+E22||...

1-范数:是指向量(矩阵)里面非零元素的个数。类似于求棋盘上两个点间的沿方格边缘的距离。 ||x||1 = sum(abs(xi)); 2-范数(或Euclid范数):是指空间上两个向量矩阵的直线距离。类似于求棋盘上两点见的直线距离 (无需只沿方格边缘)。 ||...

相容性是对于诱导范数性质的推广或者说弱化,引进的主要目的还是为了方便不等式的缩放,给出简单的误差上界,或者说就是为了对变量进行一定程度的分离.因为最理想化的性质 ||AB|| = ||A|| ||B|| 一般不成立,所以只能退而求其次. 注意三角不等式 ||A...

如果你看到的记号是||A||,那么这个所谓的模其实是矩阵范数,参看下面的链接,我前两天刚刚编辑过 http://baike.baidu.com/view/637132.htm 如果你看到的记号是|A|,那么这个经常用来表示A的行列式det(A),有时也用来表示A的所有元素取模得到的...

你说的应该是线性算子的范数吧... 意思是上确界 其实可以由若干种不同的定义范数的方法...

直白的说: 向量的一种范数就理解成在某种度量下的长度,比如欧式空间,二范数:||x||_2=sqrt(sum(x_i^2))。 矩阵范数,通常是把矩阵拉长成一列,做向量范数。e.g 矩阵的F范数就是拉成向量之后的二范数。 算子范数,算子A(有穷维中的矩阵A), 作...

这个仍然是诱导范数,只是自变量和因变量用不同的范数 普通的p-范数是这样 ||A||_p = sup ||Ax||_p / ||x||_p,其中x非零 而 ||A||_{a,b} =sup ||Ax||_b / ||x||_a,其中x非零 由于你这里涉及到一个抽象的q,想要给出||P||_{1,q}的简单闭形式是...

网站首页 | 网站地图
All rights reserved Powered by www.mdsk.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com