mdsk.net
当前位置:首页 >> 如何判断矩阵是否可逆 >>

如何判断矩阵是否可逆

首先,可逆矩阵A一定是n阶方阵 判断方法1. A的行列式不为02. A的秩等于n(满秩)3. A的转置矩阵可逆4. A的转置矩阵乘以A可逆5. 存在一个n阶方阵B使得AB或者BA=单位矩阵

1.行列式不等于02.方程组AX = 0 只有0解3.秩 = 阶数4.特征值全不为05.行向量组线性无关6.列向量组线性无关7.存在另一个B,使 AB = BA = E (定义)

一个矩阵可以用初等变换化成一个下三角或者是上三角矩阵,通过看对角元素上是否有0出现,若出现矩阵不可逆,否则可逆,这本质上是看矩阵的行列式是否为0来判断矩阵是否可逆.而进行初等行变换时,相当左边乘上相应的初等矩阵,进行一系列操作时相当于左边乘一系列初等矩阵,而这些初等矩阵的乘积是可逆的.事实上可以证明,一个可逆阵可以通过初等行变换化为单位阵,这就是通过初等矩阵求矩阵逆的方法,即通过将 [A I] 进行行变换为 [I B] 时,此时B就是A的逆.若我们通过初等变换得到上三角矩阵时,相当与 PA=上三角 ,而P是可逆的,这样A可逆等同于 上三角阵 可逆,上三角阵可以一眼看出行列式

题设不是不可逆,而是根本无法求逆.矩阵不可逆的意思是指该矩阵为奇异矩阵.奇异矩阵必然是一个方阵,其行列式为0.楼主注意只有方阵才可以求逆矩阵.

n阶方阵a为可逆的充要条件是它的行列式不等于0.一般只要看它的行列式就可以啦.(并非任意一个方阵都有可逆矩阵)

就一个n阶的矩阵 1矩阵的秩小于n,那么这个矩阵不可逆,反之可逆 2矩阵行列式的值为0,那么这个矩阵不可逆,反之可逆 3,对于齐次线性方程AX=0,若方程只有零解,那么这个矩阵可逆,反之若有无穷解则矩阵不可逆 4,对于非齐次线性方程AX=b,若方程只有特解,那么这个矩阵可逆,反之若有无穷解则矩阵不可逆 总之可逆就是说矩阵是非退化的,是满秩的,判定有很多种 比较活,掌握概念自己会运用就好了

阵为n阶方阵,若存在n阶矩阵B,使得矩阵A、B的乘积为单位阵,则称A为可逆阵,B为A的逆矩阵.若方阵的逆阵存在,则称为可逆矩阵或非奇异矩阵,且其逆矩阵唯一.如何判断矩阵可逆 逆矩阵只有1个定义,即 若n介方证a,b,ab=e,则称b为a的逆矩阵 求逆矩阵一般有2中方法:1.用公式a^(-1)=a*/|a|2用方程组ax=e,解x就是a^(-1)

其实,有时候用行列式变换,进行判断,比较方便,当然,如果细算的话,也属于判断行列式的值

你 题目 错了 cd一样的而且还都是对的最简单 方法用行列式a*b可逆 则|ab|≠0->|a|≠0且|b≠0所以a b均可逆

网站首页 | 网站地图
All rights reserved Powered by www.mdsk.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com