mdsk.net
当前位置:首页 >> 如图,已知点A是锐角∠MON内的一点,试分别在OM,ON... >>

如图,已知点A是锐角∠MON内的一点,试分别在OM,ON...

分别作点A关于OM,ON的对称点A′,A″;连接A′,A″,分别交OM,ON于点B、点C,则点B、点C即为所求.(2分)如图所示(2分);

作点A关于OM的对称点A′,关于ON的对称点A〃,连接A′A〃,交OM,ON于点B,C.

解答:解:作A关于OM的对称点A',关于ON的A对称点A'',与OM、ON相交于B、C,连接ABC即为所求三角形.证明:∵A与A'关于OM对称,A与A″关于ON对称,∴AB=A'B,AC=A''C,于是AB+BC+CA=A'B+BC+A''C=A'A'',根据两点之间线段最短,A'A''为△ABC的最小值.

解答:解:如图所示:作A关于ON的对称点A',作B关于OM的对称点B',连接A'B'交ON、OM于C、D,则C、D为所求,此时AC+CD+DB最小.

分别作点P关于OM、ON的对称点P′、P″,连接OP′、OP″、P′P″,P′P″交OM、ON于点A、B,连接PA、PB,此时△PAB周长的最小值等于P′P″.如图所示:由轴对称性质可得, OP′=OP″=OP,∠P′OA=∠POA,∠P″OB=∠POB,∴∠P′OP″=2∠MON=2×40°=80°,∴∠OP′P″=∠OP″P′=(...

如图所示:分别作点P关于OM、ON的对称点P′、P″,连接OP′、OP″、P′P″,P′P″交OM、ON于点A、B,连接PA、PB,此时△PAB周长的最小值等于P′P″.如图所示:由轴对称性质可得,OP′=OP″=OP,∠P′OA=∠POA,∠P″OB=∠POB,所以∠P′OP″=2∠MON=2×40°=80°,所以∠O...

过P作OM的垂线,垂足H1延长H1P交ON于点F,过P作ON的垂线,垂足H2延长H2P交OM于点E.以点F为圆心,PE为半径作圆交ON于A1、A2,以点E为圆心,PF为半径作圆交OM于B1、B2.原理:全等三角形,△EB1P≌△FPA1,△EB2P≌△FPA2.

解:如图,分别作P关于OM、ON的对称点P1、P2,然后连接两个对称点即可得到A、B两点,∴△PAB即为所求的三角形,根据对称性知道:∠APO=∠AP1O,∠BPO=∠BP2O,还根据对称性知道:∠P1OP2=2∠MON,OP1=OP2,而∠MON=50°,∴∠P1OP2=100°,∴∠AP1O=∠BP2O=40°,...

(1)解:∵在△AOB中,∠MON=80°,∴∠OAB+∠OBA=100°,又∵AC、BD为角平分线,∴∠PAB+∠PBA=12∠OAB+12∠OBA=12×100°=50°,∴∠APB=180°-(∠PAB+∠PBA)=130°,即随着点A、B位置的变化,∠APB的大小始终不变,为130°.(2)解:由题意,不妨令∠OAC=∠CAB=x,∠A...

作图如下:P点即为所求.

网站首页 | 网站地图
All rights reserved Powered by www.mdsk.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com