mdsk.net
当前位置:首页 >> 向量 求导 >>

向量 求导

如果是单变量向量,对它的每个坐标分别求导就行了。 比如x=(sin(t),cos(t)),对x求导就是x'=(cos(t),-sin(t)). 如果是多变量向量,有两种导数,分别是旋度和散度。具体公式看书吧。

没有!这样的“导数”无法定义,因为要建立这个定义,首先要建立差商的概念,以及差商极限的概念。 而在建立差商△f/△r的概念之前,首先要定义向量和向量的除法以及标量与向量的除法。 这就要建立一种新的向量的定义及数学体系。 梯度、散度、旋度...

呵呵,今天看文献,里面有关于向量点乘的计算式子,所以上网查找一下,发现你在百度知道里面提问这个问题,于是翻阅大学学习的高等数学书籍,找到了答案。 有个求导的公式是这样描述的:假设u(t),v(t)是可导的向量值函数,则有以下公式 具...

这与空间解析几何有关,切向量和法平面对应空间曲线,法向量和切平面对应空间曲面,做偏导都是为了切向量,后者由于法向量与求得的切向量垂直。曲面由无穷曲线组成,所有曲线在这一点处的切线都与法向量垂直,故可由此求得切平面方程。

方法: 1. 矩阵Y对标量x求导: Y = [y(ij)]d Y/dx = [dy(ji)/dx] 2. 标量y对列向量X求导: y = f(x1,x2,..,xn) dy/dX= (Dy/Dx1,Dy/Dx2,..,Dy/Dxn)' 3. 行向量Y'对列向量X求导: Y的每一列对X求偏导,各列构成一个矩阵。 4. 列向量Y对行向量X’求...

1、说明向量函数与求导的这个变量无关。2、当然可以为零,如做匀速圆周运动的质点,其速度大小对时间的导数等于零,这速度大小对时间的导数就是切向加速度。

面是没有“切线”的概念的,偏导数是曲面被用两轴构成的平面切割后得到的曲线的切线的斜率,最后经过一些计算就可以得到他是法向量了

行向量Y'对列向量X求导: 注意1×M向量对N×1向量求导后是N×M矩阵。 将Y的每一列对X求偏导,将各列构成一个矩阵。 重要结论: dX'/dX = I d(AX)'/dX = A'

没有!这样的“导数”无法定义,因为要建立这个定义,首先要建立差商的概念,以及差商极限的概念。 而在建立差商△f/△r的概念之前,首先要定义向量和向量的除法以及标量与向量的除法。 这就要建立一种新的向量的定义及数学体系。 梯度、散度、旋度...

向量在解析几何、微分几何、高等代数(线性代数)等学科涉及。 矩阵,在高等代数(线性代数)、矩阵论等学科涉及。 导数,在数学分析(高等数学)、微积分学中涉及。

网站首页 | 网站地图
All rights reserved Powered by www.mdsk.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com