mdsk.net
当前位置:首页 >> 向量 求导 >>

向量 求导

方法: 1. 矩阵Y对标量x求导: Y = [y(ij)]d Y/dx = [dy(ji)/dx] 2. 标量y对列向量X求导: y = f(x1,x2,..,xn) dy/dX= (Dy/Dx1,Dy/Dx2,..,Dy/Dxn)' 3. 行向量Y'对列向量X求导: Y的每一列对X求偏导,各列构成一个矩阵。 4. 列向量Y对行向量X’求...

d(AXB)/dt= AX(dB/dt) + (dA/dt)XB 证明有点麻烦。

1、说明向量函数与求导的这个变量无关。2、当然可以为零,如做匀速圆周运动的质点,其速度大小对时间的导数等于零,这速度大小对时间的导数就是切向加速度。

没有!这样的“导数”无法定义,因为要建立这个定义,首先要建立差商的概念,以及差商极限的概念。 而在建立差商△f/△r的概念之前,首先要定义向量和向量的除法以及标量与向量的除法。 这就要建立一种新的向量的定义及数学体系。 梯度、散度、旋度...

呵呵,今天看文献,里面有关于向量点乘的计算式子,所以上网查找一下,发现你在百度知道里面提问这个问题,于是翻阅大学学习的高等数学书籍,找到了答案。 有个求导的公式是这样描述的:假设u(t),v(t)是可导的向量值函数,则有以下公式 具...

看一下其它参考书吧,这种方法确实不好理解。我上课采用的不是这种方法。 等你学会了这部分内容,回过来再看这种讲法就能看懂了。

这与空间解析几何有关,切向量和法平面对应空间曲线,法向量和切平面对应空间曲面,做偏导都是为了切向量,后者由于法向量与求得的切向量垂直。曲面由无穷曲线组成,所有曲线在这一点处的切线都与法向量垂直,故可由此求得切平面方程。

行向量Y'对列向量X求导: 注意1×M向量对N×1向量求导后是N×M矩阵。 将Y的每一列对X求偏导,将各列构成一个矩阵。 重要结论: dX'/dX = I d(AX)'/dX = A'

没有!这样的“导数”无法定义,因为要建立这个定义,首先要建立差商的概念,以及差商极限的概念。 而在建立差商△f/△r的概念之前,首先要定义向量和向量的除法以及标量与向量的除法。 这就要建立一种新的向量的定义及数学体系。 梯度、散度、旋度...

三维中的空间曲面退化成二维就是平面曲线,偏导数代表了平面的法向量 如平面2x+3y+4z=0,其法向量(2,3,4),而由其各偏导数组成的向量为(-1/2,-3/4,-1) 举个例子: 对于平面曲线c: F(x,y)=0, 向量N=(Fx, Fy)是它法向量 ∵任意参数曲线a(t)...

网站首页 | 网站地图
All rights reserved Powered by www.mdsk.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com