mdsk.net
当前位置:首页 >> Bp神经网络 >>

Bp神经网络

楼主你好,图片呢?!

因为初始权值和阈值是随机产生的。 神经网络每次结果不同是因为初始化的权值和阈值是随机的,因为每次的结果不一样,才有可能找到比较理想的结果,找到比较好的结果后,用命令save filename net;保存网络,可使预测的结果不会变化,调用时用命令lo...

Back Propagation BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责...

前馈神经网络就是一层的节点只有前面一层作为输入,并输出到后面一层,自身之间、与其它层之间都没有联系,由于数据是一层层向前传播的,因此称为前馈网络。 BP网络是最常见的一种前馈网络,BP体现在运作机制上,数据输入后,一层层向前传播,然...

人工神经元的研究起源于脑神经元学说。19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。人们认识到复杂的神经系统是由数目繁多的神经元组合而成。大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经...

bp神经网络学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。对于一些复杂问题,BP算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的。而rbf神经网络是种高效的前馈式网络,它具有其他前向网络所不具有的最佳逼近性能...

newff 创建前向BP网络格式: net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) 其中:PR —— R维输入元素的R×2阶最大最小值矩阵; Si —— 第i层神经元的个数,共N1层; TFi——第i层的转移函数,默认‘tansig’; BTF—— BP网络的训练函数,...

1、神经网络算法隐含层的选取1.1 构造法首先运用三种确定隐含层层数的方法得到三个隐含层层数,找到最小值和最大值,然后从最小值开始逐个验证模型预测误差,直到达到最大值。最后选取模型误差最小的那个隐含层层数。该方法适用于双隐含层网络。...

1、BP神经网络,指的是用了“BP算法”进行训练的“多层感知器模型”。 2、感知器(MLP,Multilayer Perceptron)是一种前馈人工神经网络模型,其将输入的多个数据集映射到单一的输出的数据集上,可以解决任何线性不可分问题。 3、多层感知器就是指得...

样本变量不需要那么多,因为神经网络的信息存储能力有限,过多的样本会造成一些有用的信息被丢弃。如果样本数量过多,应增加隐层节点数或隐层数目,才能增强学习能力。 一、隐层数 一般认为,增加隐层数可以降低网络误差(也有文献认为不一定能...

网站首页 | 网站地图
All rights reserved Powered by www.mdsk.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com