mdsk.net
当前位置:首页 >> x2ArCtAnx的不定积分 >>

x2ArCtAnx的不定积分

x2arctanx的不定积分=(1/3)x^3.arctanx - (1/3)∫ x^3/(1+x^2) dx =(1/3)x^3.arctanx - (1/3)∫

如何求形如∫x^2arctanaxdx的不定积分-百度经验本经验介绍形如∫x^2arctanaxdx的不定积分通式求解。并对a取不同值举例说明。工具/原料 不定积分

x^2arctanxdx不定积分求过程1-1/(1+x^2)]dx^2 =1/3x^3arctanx-1/6x^2+1/6ln(1+x^2)+C(C为积分常数)

2xarctanx的不定积分是多少= x^2*arctanx - ∫ (x^2 + 1 - 1)/(1 + x^2) dx = x^2*arctanx - ∫ [1 - 1/(1 + x^2)] dx =

求不定积分∫x^2arctanxdx1-1/(1+x^2)]dx^2 =1/3x^3arctanx-1/6x^2+1/6ln(1+x^2)+C(C为积分常数)

求1/x2arctanx不定积分求1/x2arctanx不定积分 分享 新浪微博 QQ空间 举报 1个回答 #活动# 春节归乡有奖回答征集

求∫1/x2arctanxdx的不定积分=-1/xarctan+ln|x|-∫xdx/(1+x^2)=-1/xarctanx+ln|x|-0.5∫d(x^2)/(1+x^2)=-1/xarctanx+ln|x|-0.5ln(1

求x(arctanx)的不定积分t)-ttant+∫tantdt=1/2t^2/cos^2(t)-ttant-ln|cost|+C=1/2(x^2+1)arctan^2(x)-xarctanx-ln√(x^2+1)+C

x2arctanx的不定积分∫ x^2arctanx dx=(1/3)∫ arctanx d(x^3)=(1/3)x^3.arctanx - (1/3)∫

求∫1/x2arctanxdx的不定积分分部积分法:原式=-1/xarctanx-∫(-1/x)1/(1+x^2)dx=-1/xarctanx+∫1/x(1+x^2)

rpct.net | nmmz.net | 596dsw.cn | knrt.net | famurui.com | 网站首页 | 网站地图
All rights reserved Powered by www.mdsk.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com